Utility Representations

Bruno Salcedo

Cornell University · Decision Theory · Spring 2017

utility representations

• Can we represent preferences numerically?

Definition: A (utility) function $u: X \to \mathbb{R}$ is a utility representation of \succ if for every $x, y \in X$

$$x \succ y \Leftrightarrow u(x) u(y)$$

- A utility representation makes it easier to compare choices
 - Asparagus is a 5 and kale is a 1: obviously I prefer asparagus to kale!
- A utility representation is easier to think about than an ordering
- It's also typically easier to find an optimal choice maximizing a utility function (e.g., using calculus)

utility representations

- If u represents \succ , then we must have $x \not\succ y$ if and only if $u(x) \le u(y)$
- Thus, $x \sim y$ iff u(x) = u(y)
- **Example:** $X = \{x, y, z\}, x \succ_{po} z$, and y is incomparable to x and z
 - \succ_{po} has no utility representation
 - Since $x \sim y$ and $y \sim z$, we would need u(x) = u(y) and u(y) = u(z)
 - Since $x \succ z$ we would need u(x) > u(z)
 - Hnce we would need u(x) = u(z) and u(x) > u(z)

So when does an ordering have a utility representation?

necessary conditions

Proposition: If \succ has a utility representation, then \succ is a preference order

Proof:

- Suppose that \succ has a utility representation u
- We must show that

 is asymmetric and negatively transitive
 - If $x \succ y$, then u(x) > u(y), so $u(y) \not> u(x)$, so $x \not\succ y$
 - If $x \not\succ y$ and $y \not\succ z$, then $u(x) \le u(y)$ and $u(y) \le u(z)$, so $u(x) \le u(z)$, so $x \not\succ z$

sufficient conditions for finite case

Theorem: Given a finite set X, a binary relation \succ on X is a preference order if and only if \succ has a utility representation

Proof:

- Recall that if \succ is a preference order on X, then we can partition the elements of X into "indifference classes" X_1, \ldots, X_k such that " $X_1 \succ X_2 \succ \ldots \succ X_k$ "
- Thus, we can define u so that u(x) = k for all $x \in X_1$, u(x) = k 1 for all $x \in X_2, \ldots, u(x) = 1$ for all $x \in X_k$
- Here is a more formal proof by induction. . .

proof for finite case

- Suppose that $X = \{x_1, \dots, x_n\}$
- We show that if \succ is a preference order on X then \succ has a utility representation, by induction on n, the number of elements in X
- if n = 1, then just take u(x) = 1 and we are done
- Suppose the result holds if X has cardinality n-1 (i.e., n-1 elements)
- If \succ is a preference order on X, then it also a preference order on $X' = X \setminus \{x_n\} = \{x_1, \dots, x_{n-1}\}$
 - This needs to be checked!
- By the induction hypothesis, since X' has n-1 elements, there is a utility function $u: X' \to R$ such that u(x) > u(y) iff $x \succ y$ for all $x, y \in X'$
- How do we extend u to x_n ?

a useful property

- Before proceeding with the proof, recall a useful property that we will use a few times today
- In words, if two alternatives x and y are not comparable, then every other alternative z ranks relative to x the same way it ranks relative to y

Lemma: If \succ is a strict preference and $x \sim y$, then

(a)
$$x \succ z$$
 iff $y \succ z$
(a) $z \succ x$ iff $z \succ y$

(a)
$$z \succ x$$
 iff $z \succ y$

Proof:

- By NT, if $x \not\succ z$, then $y \not\succ x \not\succ z$ and thus $y \not\succ z$
- By NT, if $z \not\succ x$, then $z \not\succ x \not\succ y$ and thus $z \not\succ y$

proof for finite case

There are four cases to consider

- 1. If $x_n \sim y$ for some $y \in X'$, set $u(x_n) = u(y)$
 - By the lemma, $x \succ z$ iff $y \succ z$ iff $u(x_n) = u(y) > u(z)$
- 2. If $x_n \succ y$ for all $y \in X'$, set $u(x_n) = 1 + \max_{y \in X'} u(y)$
 - For every $z \neq x_n$, $x_n \succ z$ and $u(x_n) > u(z)$
- 3. If $y \succ x_n$ for all $y \in X'$, set $u(x_n) = \min_{y \in X'} u(y) 1$
 - For every $z \neq x_n$, $z \succ x_n$ and $u(z) > u(n_n)$
- 4. If none of the previous cases apply, there exist y and y' in X' such that $y \succ x_n \succ y'$ and we can set $u(x_n) = 0.5 \min_{v \succ x} u(y) + 0.5 \max_{x \succ v} u(y)$
 - By transitivity of \succ , max_{x≻y} $u(y) < u(x_n) < \min_{y \succ x} u(y)$ (why?)
 - hence $x \succ z$ iff $u(z) \le \max_{x \succ y} u(y) < u(x)$

ordinal utility

• Is utility uniquely defined? only up to monotone transformations

Proposition: If u represents \succ and $f: \mathbb{R} \to \mathbb{R}$ is strictly increasing, then $f \circ u$ also represents \succ

- **Proof:** $x \succ y$ iff u(x) > u(y) iff f(u(x)) > f(u(y))
- Be careful with interpretation of ordinal utility:
 - Decreasing marginal utility?
 - Interpersonal comparisons?

countable case

Theorem: Given a countable set X, a binary relation \succ on X is a preference order if and only if \succ has a utility representation

Proof:

- Since X is countable we can label its elements $X = \{x_1, x_2, x_3, \dots\}$
- Let $W(x) = \{y \in X \mid x \succ y\}$ be the set of alternatives that are worse than x
- Let $N(x) = \{n \mid x_j n \in W(x)\}$ be the set of labels of such alternatives
- Define $u: X \to \mathbb{R}$ by

$$u(x) = \sum_{n \in N(x)} \left(\frac{1}{2}\right)^n$$

with the convention that sum over the empty set equals 0

We need to show that u represents >

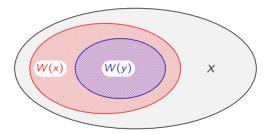
proof

- Suppose $x \succ y$
 - By transitivity, if $y \succ z$ then $x \succ z$, and thus $W(y) \subseteq W(x)$
 - By asymmetry, $y \not\succ y$, and thus $W(y) \subsetneq W(x)$
 - Therefore $N(y) \subseteq N(x)$ and thus u(x) > u(y)
- Suppose u(x) > u(y)
 - From previous point, $y \not\succ x$
 - If $x \sim y$, by our lemma, W(x) = W(y)
 - This would imply u(x) = u(y) contradicting our assumption
 - Hence $y \not\sim y$ and $y \not\succ x$, and thus $x \succ y$

why u works

If X is countably infinite, then the function $Pr: X \to [0, 1]$ given by $Pr(x_n) = 2^{-n}$ is a probability function on X with full support and

$$u(x) = \sum_{y \in W(x)} \Pr(y) = \Pr(W(x))$$

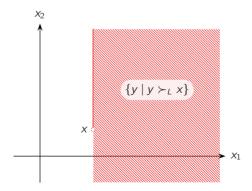


$$x \succ y \Leftrightarrow W(x) \supseteq W(y) \Leftrightarrow \Pr(W(x)) > \Pr(W(y))$$

lexicographic preferences

- Do all preference orders admit a utility representation? No
- **Example:** $X = \mathbb{R}^2$ and \succ_L is the lexicographic or dictionary order given by

$$x \succ_{L} y \qquad \Leftrightarrow \qquad \left\{ \begin{array}{l} x_{1} > y_{1} \\ \text{or} \\ x_{1} = y_{1} \text{ and } x_{2} > y_{2} \end{array} \right.$$

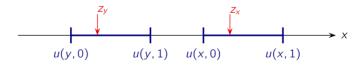


lexicographic preferences

- \succ_L is asymmetric
 - If $x \succ_L y$ then $x_1 > y_1$ or $[x_1 = y_1 \text{ and } x_2 > y_2]$
 - If $x_1 > y_1$ then neither $y_1 > x_1$ nor $y_1 = x_1$, and thus $y \not\succ_L x$
 - If $[x_1 = y_1 \text{ and } x_2 > y_2]$ then neither $y_1 > x_1$ nor $[y_1 = x_1 \text{ and } y_2 > x_2]$, and thus $y \not\succ_L x$
- \succ_L is negatively transitive
 - If $x \neq y$ and $x \not\succ_L y$, then $y \succ_L x$
 - $x \not\succ_L y$ implies either $x_1 < y_1$ or $[x_1 = y_1 \text{ and } x_2 \leq y_2]$
 - If $x \neq y$, this implies either $y_1 > x_1$ or $[y_1 = x_1 \text{ and } y_2 > x_2]$
 - If $x \not\succ y \not\succ z$ and x = y, or y = z, or x = z, then $x \not\succ z$ (why?)
 - Suppose $x \not\succ y \not\succ z$, $x \neq y$, $x \neq z$ and $y \neq z$
 - Then $z \succ y \succ x$
 - If $z_1 > y_1 \ge x_1$ then $z \succ x$ and thus $x \not\succ z$
 - If $z_1 \ge y_1 > x_1$ then $z \succ x$ and thus $x \not\succ z$
 - If not, then $z_1 = y_1 = x_1$ and $z_2 > y_2 > x_2$, then $z \succ x$ and thus $x \not\succ z$

lexicographic preferences

- \succ_L does not admit a utility representation
 - Suppose $u: X \to \mathbb{R}$ represents \succ_L
 - For every $x, y \in \mathbb{R}$ if x > y then $(x, 1) \succ_{L} (x, 0) \succ_{L} (y, 1)$
 - Hence, if x > y then we must have u(x, 1) > u(x, 0) > u(y, 1)
 - Therefore, the intervals $\{[u(x,0),u(x,1)] \mid x \in \mathbb{R}\}$ are all disjoint
 - Moreover, each of these intervals contains a rational number z_x ∈ $[u(x,0),u(x,1)] \cap \mathbb{Q}$



- Hence, we have constructed a one-to-one function from ℝ to ℚ, which is not possible because ℚ countable
- Hence, there cannot exist a utility representation for \succ_L

archimidean property

- Trying to "fit" (X, \succ) into $(\mathbb{R}, >)$
- The properties of (X, \succ) must be compatible with those of $(\mathbb{R}, >)$
 - > is NT and A \Rightarrow > must be NT and A
 - For every two reals $x,y\in\mathbb{R}$, if x>y, there exists a rational number $z\in\mathbb{Q}$ such that x>z>y

Definition: A set $Z \subseteq X$ is order-dense with respect to \succ if for every $x, y \in X \setminus Z$ such that $x \succ y$, there exists some $z \in Z$ such that $x \succ z \succ y$

general case

Theorem: Given an arbitrary set X and a binary relation \succ on X, \succ has a utility representation if and only if

- (a) \succ is a preference order
- (b) X has a countable order-dense subset with respect to \succ

- This result also covers the finite and countable cases (why?)
- A similar construction to the countable case works
 - Enumerate $Z = \{z_1, z_2, \ldots\}$
 - Define $N(x) = \{n \mid x \succ z_n\}$ and $u(x) = \sum_{n \in N(x)} 2^{-n}$

continuous representations

• Say that \succ is continuous if whenever $x \succ y$ and $x_n \longrightarrow x$, there exists some N such that for $n \ge N$ we have $x_n \succ x$

Proposition: If \succ is a continuous preference order, then there exists a continuous function $u: X \to \mathbb{R}$ that represents \succ

partial orders

- Partial orders are transitive and asymmetric, but indifference (non-comparability) may not be transitive
- They may fail to have utility representations
- $u: X \to \mathbb{R}$ is a partial utility representation of \succ if

$$x \succ y \qquad \Rightarrow \qquad u(x) > u(y)$$

Theorem: If X is countable, and \succ is transitive and asymmetric, then \succ has a partial utility representation

Same construction and proof as before works

separability

- Often use models with more structure
- Suppose $X = X_1 \times ... \times X_n$ is a product space with n factors
- Typical elements $x = (x_1, \dots, x_n)$

Definition: A utility function $u: X \to \mathbb{R}$ is additive separable if there exist functions $u_i: X_i \to \mathbb{R}$ such that

$$u(x) = u_1(x_1) + \ldots + u_n(x_n)$$

examples

Cobb-Douglas utility from consumption bundles

$$u(x, y) = \alpha \log(x) + \beta \log(y)$$

• Expected utility from prizes (x_1, \ldots, x_n) with probabilities (p_1, \ldots, p_n)

$$U(L) = \sum_{i=1}^{n} p_i u(x_i)$$

• Discounted utility from consumption stream $c = (c_0, \dots, c_T)$

$$U(c) = \sum_{t=0}^{T} \delta^{t} u(c_{t})$$

- Preferences over some products with multiple features (health insurance)
- Foundations of partial equilibrium

independent and essential factors

• Given two alternative $x, y \in X$ and a set of indices $I \subseteq \{1, ..., n\}$, let $(x_I, y_{-I}) \in X$ denote the alternative $z \in X$ given by

$$z_i = \left\{ \begin{array}{l} x_i \text{ if } i \in I \\ y_i \text{ if } i \notin I \end{array} \right.$$

• \succ satisfies independent factors if for all $x, y, w, z \in X$ and $I \subseteq \{1, ..., n\}$

$$(x_1, w_{-1}) \succ (y_1, w_{-1}) \Leftrightarrow (x_1, z_{-1}) \succ (y_1, z_{-1})$$

• Factor *i* is essential with respect to \succ if there exist $x, y, z \in X$ such that

$$(x_i, z_{-i}) \succ (y_i, z_{-i})$$

sufficient conditions for separable utility

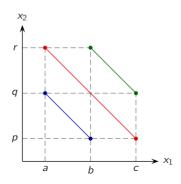
Theorem: If \succ is a continuous preference order on $X = X_1 \times ... \times X_n$ with independent factors and there are at least three independent factors then

- (a) \succ has an additive separable utility representation u
- (b) The corresponding u_i functions are continuous
- (c) If v is another additive separable utility representation, then there exist $a, b \in \mathbb{R}$ with a > 0 such that $b(\cdot) = au(\cdot) + b$

a necessary condition

Proposition: If $X = X_1 \times X_2$ and \succ has an additive separable utility representation, then for all $a, b, c \in X_1$ and $p, q, r \in X_2$

$$[(a,q) \sim (b,p) \& (c,q) \sim (b,r)] \quad \Rightarrow \quad (a,r) \sim (c,p)$$



Condorcet paradox

- Is there a natural way of deriving social preferences from individual preferences?
- Example: Condorcet Paradox
 - Anna, Bob and Charlie's preferences are given by

$$x \succ_A y \succ_A z$$
 $y \succ_B z \succ_B x$ $z \succ_C x \succ_C y$

One could construct social preferences > by simple majority voting

$$x \succ y \qquad y \succ z \qquad z \succ x$$

This would violate transitivity!